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Abstract 
In order to achieve beam intensity and luminosity 

requirements, pulsed LINAC accelerators have stringent 
requirements on the amplitude and phase of RF cavity 
gradients. The amplitude and phase of the RF cavity 
gradients under heavy beam loading must be kept constant 
within a fraction of a % and a fraction of a degree 
respectively. The current paper develops a theoretical 
method to calculate RF parameters that optimize cavity 
gradients in multi cavity RF units under heavy beam loading. 
The theory is tested with a simulation example.  

INTRODUCTION 
Modern pulsed LINAC accelerators are being designed 

taking advantage of the cost reduction that can be achieved 
powering a string of cavities from one klystron. At 70% peek 
power utilization a 10 MW klystron can power 24 
superconducting cavities at an average gradient of 
31.5MV/m and a beam current of 9mA. The XFEL main 
LINAC klystrons at DESY will power 32 cavities at 
23.6MV/m and an average beam current of 5mA. As 
multiple cavities are connected to a single klystron the RF 
system parameters and control become more complex. A 
typical low level RF (LLRF) control loop controls the 
amplitude and the phase of the klystron’s RF power, 
however, the loop cannot dynamically control individual 
cavity amplitude and phases. Typically, the control is done 
over the vector sum of all cavity gradients within the RF 
unit. The problem is further complicated by the need to 
obtain the maximum possible acceleration from the RF unit, 
pushing cavity gradients up close to their quenching limits.  
These cavity maximum gradients are different within a 
certain spread. Proton LINACs such as HINS [5] and Project 
X [6] add extra complexity to the RF system. A RF unit may 
need cavities operating at different synchronous phases (Φs). 
Secondly, particles travel cavities at increasing (non-
relativistic) velocities, which implies different beam loading 
conditions from cavity to cavity. 

 
Figure 1. 

Most of the literature available on cavity field dynamics 
follows a steady state approach [1-4]. The cavity is modeled 
by a 2nd order ODE (ordinary differential equation) and later 
approximated by a 1st order ODE model due to the high 

loaded Q of the cavity. The steady state approach determines 
optimality conditions for minimum generator power as a 
function of the cavity coupling parameter βopt and cavity 
tuning angle φopt. The steady state analysis works well for 
continuous waveform (CW) machines.  A similar steady 
state assumption is assumed about the beam, and these 
models use the average beam current. 

The steady state analysis applied to pulsed RF Linacs does 
not provide optimum operation parameters for all cases. For 
cavities operating “on crest” (Φs=0) under heavy beam 
loading and strong RF coupling an exact calculation of the 
forward power and beam injection time can set constant 
cavity gradients (flattops) and minimize or zero out the 
reflected power. For “on crest” operation, gradient flattops 
can still be maintained for cavities operating at different 
gradients with one time optimization of the coupling 
parameter. Unfortunately, this is not longer valid when 
cavities in the same RF unit need to be operated at different 
synchronous phases. Moreover, as is the case for pulsed RF 
proton beam Linacs such as HINS [5] and Project X [6], 
cavities have different beam loading conditions. To 
exemplify the theory that will be developed in this paper we 
use one RF unit from the Project X proposal. The RF unit 
has 3 cryomodules with a total of 21 cavities operating with 
synchronous phases and beam loadings as described in Table 
1. A typical ±10% Vcav spread is assumed. 

Table 1. 

Cavity 
Number 

Beam 
Beta In 

Beam Beta 
Out 

Cavity 
Phase 

(degrees) 

Cavity 
voltage 
(MV/m) 

182 0.9196 0.9208 -20 23.22  
183 0.9208 0.9220 -20 25.62  
184 0.9220 0.9232 -20 24.90  
185 0.9232 0.9243 -20 27.30  
186 0.9243 0.9255 -20 23.46  
187 0.9255 0.9266 -19 26.34  
188 0.9266 0.9277 -19 24.66  
189 0.9277 0.9288 -19 24.18  
190 0.9288 0.9299 -19 26.58  
191 0.9299 0.9309 -19 22.74  
192  0.9309 0.9320 -18 27.54  
193 0.9320 0.9330 -18 25.38  
194 0.9330 0.9340 -18 24.42  
195 0.9340 0.9350 -18 26.82  
196 0.9350 0.9360 -18 25.86  
197 0.9360 0.9370 -17 22.98  
198 0.9370 0.9380 -17 23.94  
199 0.9380 0.9389 -17 25.14  
200 0.9389 0.9398 -17 23.70  
201 0.9398 0.9407 -17 26.10  
202 0.9407 0.9416 -16 27.06  

 
The steady state optimization minimizes the klystron 

reflected power during beam-on time using [1-4]: 
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Table 2 introduces the RF system parameters. For a 

description of these parameters see [1-4]; 
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Table 2. 
Symbol Definition 
β RF Coupling coefficient 
Δω Cavity detuning 
ω12 Cavity half bandwidth 
R Cavity shunt impedance 
RL Loaded resistance 
Ig Generator current 
Ib Beam current 
θ Generator current phase 

A simulation of the steady state optimum parameters using 
the RF unit example described above gives gradients and 
powers as shown in Figure 1. The simulator used is based on 
the 1st order dynamic models described in [1-4]. Also a 
±10% uniformly distributed maximum cavity gradient spread 
has been assumed around the required average cavity 
gradient for the RF unit. We observe that although the 
reflected power is small the individual cavity amplitudes and 
phases are neither constant nor close to the set-point values. 
Also the vectorsum (Fig.1a black trace) is far away from the 
vectorsum set-point (Fig.1a blue trace). As a consequence, 
when the feedback loop is closed the individual cavity 
gradients are further distorted to accommodate the vectorsum 
to the setpoint. The LLRF closed loop is unable to control 
cavity voltages to individual set-points because the system is 
uncontrollable at the individual set point level. 

 
Figure 2 a) Cavity, vectorsum and vectorsum setpoint 
amplitude voltages, b) cavity phases, c) RF forward, 
reflected and beam powers. 

TRANSIENT ANALYSIS 
The RF system voltages and currents are modeled by 
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The RF voltages and currents in (1) are modulated in 
amplitude and phase. The LLRF controls the slow dynamics 
of the RF amplitude and phase called the RF envelope. The 

RF envelope is typically modeled by a 1st order ODE in the 
complex space C 1 [4]. 

)()()( tBItAVtV totcavcav  ,   (2) 
As said, V and I are complex numbers, and  
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Since the system is linear, the cavity voltage is the 
superposition of the cavity response to the generator and 
beam currents (power) j

g eI and j
beI . The current 

equations assume the convention that the phase is zero for 
the negative of the beam current. 
The solution to equation (2) is given by: 
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(3) 
 

Where u(t) is the Heaviside function (i.e. u(t)=1 t≥0 and 0 
otherwise). 

To obtain a flattop at the injection time t=t0 we must 
eliminate the time dependency in equation (3). That is 
achieved by making 
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(5) 
Equations (4) and (5) guarantee a flattop for t≥ t0. The 

appropriate value for the flattop amplitude and phase can be 
obtained from equation (3) at t=t0-. This is given by 
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Using the tuning angle equation 12
tan 

  , the complex 
cavity voltage in (6) can be by its amplitude and phase 
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Equations (7) and (8) have 3 degrees of freedom in the RF 
system phase space θ (or ψ), β and t0. Both RL and the half 
bandwidth of the cavity ω12 are a function of β. In a multi 
cavity RF unit, individual cavity flattops can be set 
calculating individual cavity values θcav and βcav that satisfy 
(7) and (8) with (constrains (4) and (5) for a given t0. 
However, t0, the beam-on time, is unique for the RF unit and 
constrains the generator (reflected) power. Hence, to 
minimize the overall power requirements in an N cavity RF 
unit a system of 2N equations with 2N+1 unknowns must 
be solved. 

RF POWER OPTIMIZATION 
The reflected power is given by 

dissbeamgenref PP
dt

dWPP 
,   where  

Pref: reflected power. 
Pgen: generator power 
Pbeam: power transferred to the beam.  
dW/dt: change of stored energy in the cavity. 
Pdiss: cavity cryogenic losses. 
For superconducting cavities Pdiss is very small compared 

to the other members and can be neglected. If (6) and (7) are 



able to achieve a good flattop then dW/dt is also very small. 
Then we can approximate Pref ≈ Pgen – Pbeam and the reflected 
power is given by the mismatch between the RF system 
characteristic impedance and the cavity-beam impedance 
reflected to the waveguide (Fig 2). 

 
Figure 2 

The cavity-beam impedance is given by the parallel 
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Minimizing the reflected power implies Zeq/N2 that should 
be a close match of Zo. Given that Zo is real, the imaginary 
part of Zeq should be minimized and the real part of Zeq 
reflected to the waveguide side should match Zo. 

OPTIMIZATION AND SIMULATION 
EXAMPLE 

The nonlinear system given by (7), (8) and (9) with 
constrains given by (4) and (5) for each cavity can be solved 
to find an optimum set of parameters βi

opt, ψi
opt (or θi

opt), and 
t0

opt. As an example of the method described above we have 
used the same Project X RF unit described in Table I. The 
nonlinear system of equations has been solved using a 
numerical solver from Matlab. The optimized parameters 
were fed to the same RF unit simulator used to generate 
Figure 1. Figure 3 shows that the cavity gradients using the 
transient approach have been substantially improved both for 
amplitude and phase. This improvement to the individual 
cavity gradients is done at the cost of increasing the reflected 
power with respect to the steady state approach during the 
beam-on to about 4% of the beam power. 

 
Figure 3 a) Cavity, vectorsum and vectorsum setpoint 

amplitude voltages, b) cavity phases, c) RF forward, 
reflected and beam powers. 

CONCLUSIONS 
The transient analysis allows optimum cavity gradient 

flattops across the RF unit, in particular when those cavities 
are operated at different synchronous phases (Φs) and with 
different beam loading conditions. The optimum RF 
parameters β opt

i , opt
i only need to be set once during the RF 

and beam commissioning and are not coupled with 
parameters in other cavities in the RF unit. The beam-on 
time t0

opt can be used to minimize the RF generator power. 
For the sake of comparison Table 3 shows the optimization 
parameters obtained by each method. 

Table 3. 
Cavity 

Number 
Steady state Transient 
Beta Theta Beta Theta 

182 2942 -20.00º 3473 -35.54º 

183 2692 -20.00º 4184 -34.77º 

184 2797 -20.00º 3881 -35.10º 

185 2574 -20.00º 4540 -34.40º 

186 3021 -20.00º 3257 -35.79º 

187 2731 -19.00º 4109 -33.11º 

188 2940 -19.00º 3515 -33.72º 

189 3022 -19.00º 3292 -33.96º 

190 2770 -19.00º 3993 -33.23º 

191 3262 -19.00º 2663 -34.66º 

192 2728 -18.00º 4151 -31.33º 

193 2981 -18.00º 3439 -32.03º 

194 3119 -18.00º 3071 -32.40º 

195 2858 -18.00º 3781 -31.69º 

196 2982 -18.00º 3436 -32.03º 

197 3395 -17.00º 2398 -31.28º 

198 3278 -17.00º 2691 -30.98º 

199 3140 -17.00º 3049 -30.63º 

200 3348 -17.00º 2516 -31.16º 

201 3055 -17.00º 3272 -30.41º 

202 2977 -16.00º 3515 -28.40º 
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